T

Lecture 27:
The Journey’s End,
The Journey Onward

Outline for Today

- Announcements
- Expectations as we head into the end of the quarter.
« The Big Picture
- Where have we been? Why did it all matter?
« Where to Go from Here
- What’s next in CS theory?
 Your Questions

- What do you want to know?

 Final Thoughts!

Announcements

* Problem Set 9 was due thirty minutes ago.

- You can use a late day to extend the deadline to
tomorrow at 1:00PM.

- Solutions will go online Monday at 1:00PM.

Congratulations - you're done
with CS103 problem sets!

« Take a minute to reflect on how much you’ve learned!
Look back at PS1. Those problems seem a lot easier now,
don’t they?

Final Exam Logistics

* Our final exam is on Wednesday, March 19" from
3:30 - 6:30 PM.

 Locations are now available on the course website; check
your seat assignment ASAP and write it down somewhere
easily accessible.

 The final exam is cumulative and covers topics from
PS1 - PS9 and LOO - L26. The format is similar to that
of the midterm, with a mix of short-answer questions
and formal written proofs.

» Like the midterms, it’s closed-book, closed-computer,
and limited-note. You can bring one double-sided
8.5” X 11” notes sheet with you.

* Best of luck - you can do this!

Preparing for the Final Exam

 Iris and Stanley are running a review session
Monday trom 3:00 - 4:00 PM in CoDa E160.

 We’ve posted a gigantic compendium of CS103
practice problems on the course website.

* You can search for problems based on the topics
they cover, whether solutions are available,
whether they're ones we particularly like, and
whether they were used on past exams.

* As always, keep the TAs in the loop! Ask us
questions if you have them, feel free to stop by
office hours to discuss solutions, etc.

EOQ Logistics

* This Sunday is the last day for OH!
 Ed will lock at noon Wednesday, March 19,

 The team is grading the weekend after the
exam.

* Grades are due to the Registrar at 11:59
PM on Tuesday, March 25.

*] use an anonymized spreadsheet when
assigning final letter grades. I'm committed
to equitability and impartiality in grading.

A Fun Historical Note

* The results you've seen presented in CS103
were not discovered in the order you may have
expected.

* For example:

- Regular languages were developed after Turing
machines.

- Cantor had worked out different orders of infinity
before the U and N symbols were invented.

* Check out the “Timeline of CS103 Results” on
the course website for more information!

Please evaluate this course on Axess.
Your feedback really makes a difference.

Remember Problem Set 77

Wow, so many names to shout out!

(suspense...)

The Big Picture

Take a minute to reflect on your journey.

Set Theory
Power Sets
Cantor’s Theorem
Direct Proofs
Parity
Proof by Contrapositive
Proof by Contradiction
Modular Congruence
Propositional Logic
First-Order Logic
Logic Translations
Logical Negations
Propositional Completeness
Vacuous Truths
Perfect Squares
Triangular Numbers
Tournaments
Functions
Injections
Surjections
Involutions
Monotone Functions
Minkowski Sums
Bijections

Graphs
Connectivity
Independent Sets
Vertex Covers
Trees
Bipartite Graphs
The Pigeonhole Principle
Ramsey Theory
Mathematical Induction
Complete Induction
The Spanning Tree Protocol
Formal Languages
DFAs
Regular Languages
Closure Properties
NFAs
Subset Construction
Kleene Closures
Error-Correcting Codes
Regular Expressions
State Elimination
Monoids
Distinguishability

Myhill-Nerode Theorem
Nonregular Languages
Context-Free Grammars
Merkle-Damgard Construction
Fixed Point Theorems
Turing Machines
Church-Turing Thesis
TM Encodings
Universal Turing Machines
Self-Reference
Decidability
Recognizability
Self-Defeating Objects
Undecidable Problems
The Halting Problem
Verifiers
Diagonalization Language
R and RE
co-RE
Complexity Class P
Complexity Class NP
P = NP Problem
Polynomial-Time Reducibility
NP-Completeness

You’'ve done more than just check
a bunch of boxes off a list.

You've given yourself the foundation
to tackle problems from all over
computer science.

PRPs and PRFs F""’,S’SZ“I

 Pseudo Random Function (PRF) defined over (K,X,Y):
F: Kx X =2 Y

such that exists “efficient” algorithm to evaluate F(k,x)

Functions befween
sefst K x X is the
set of all pairs made
from K and X,

* Pseudo Random Permutation (PRP)
E: KxX —> X

such that:
(=

“eﬁicient”}lgorithm to evaluate E(k,x)

ction E(Kk,-) is [one-to-one}«\
“efficient” inversion algorithm
Injectivity:

Definifions in
ferms of
ethiciency!

From CS124

Information

| Strong triadic closure]
A

If a node Q has two strong t

es to nodes Y and Z, there is an edge between Y and Z

What do graphs
with these
properties look
like ?

. @ . N N

A New definitions
T W on graphs:

: Transtorm some
object To make it

closed under
some operafion!

From CS124

From Languages to
Information

Tokenization in NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly

>>> text = ’That U.S.A. poster-print costs $12.40...°
>>>/ﬁittern — B i # set flaa\to allow verbose regexps

([A-Z]\.)+ # abbreviatjions, e.g. U.S.A.
| \w+(-\w+)* # words with optional internal hyphens
| \$?2\d+(\.\d+)?%? # currency land percentages, e.g. $12.40, 82%
BRGT.T # ellipsis
| [1L.,;"’?20:-_°] # these ifj separate tokens; includes], [

AT

>>> nltk.regexp_tokiize(text, pattern)

[’That’, ’U.S.A.’, ’'pRoster-print’, ’costs’, ’$12.40°, ’...’]

1t's a big

regex!

Describing the
world in sef
Theory!

From CS237A

Principles of Robot
Autonomy

Plar

-(Let R(q) € W denote set of points in the world occupied by robot\

when in configuration g
Robot in collision e R(g) N0 # @
«_ Accordingly, free space is defined as: C¢.. = {q € C|R(q) N 0 = 0},

r
L

pace

~

Path planning problem in C-space: compute a continuous path:
- 7:[0,1] = Cpree, with 7(0) = g; and 7(1) = gg

S

—

Model paths
as tunctions:

From CS251

Cryptocurrencies and
Blockchain
Technologies

CS251: Cryptocurrencies and Blockchain Technologies

Assignment #1

Due: 11:59pm on Mon., Oct. 8, 2018
Submit via Gradescope (each answer on a separate page) code: 9RZGVZ

Problem 1. Hash functions and proofs of work. In class we defined two security properties for
a hash function, one called collision resistance and the other called proof-of-work security. Show
that a collision-resistant_hash function may not be proof-of-work secure.

Hint: lef H : X xY — {0,1,...,2" — 1} be a collision-resistant hash function. Construct a new
hash funftion H' : X xY — {0,1,...,2™ — 1} {where m may be greater than n) that is also
collision resistant, but for agixed difficulty D (say, D = 23%) is not proof-of-work secure with
difficulty D. That is, for_gfery puzzle x € X it should be trivial to find a solution y € Y such
that H'(x . This is despite H’ being collision resistant. Remember to explain why
your H' A5 collision resistant, that is, explain why a collision on H’ would yield a collision on H.

whoa, if's a
function:

I1t's a CFa:

From CS143

Compilers

<~ EST+-E
e E- T,
E—- -T+E
E-T; T, .3
— - 1nt T E-
E-T+E|lS=E T— - (E) — (E°)
T - int _ .
T—’(E) TE + llnt T ¢
\ _/ .
]SE::—wE = ™1 2 int intE ('|E')
- -T: =7
Start'*E—>-T+E F—- -T+E
T—-int | _HE7T9% o To.int
T — - (E) E—->T-+E T— - (E)

\

CFa:!

I1's an automaton
derived from a

(

Search problems | from CS221 I

P Definition: search problem

@tates: the set of states)

Sitart € States: starting state
Actions(s): possible actions from state s

Succ(s, a,): where we end up if take action g In state s
Cost(s, a): cost for taking action a in state s

JsEnd(s): whether at end Y
» Succ(s,a) = T'(s,a, 3’;\
« Cost(s,a) = Reward(s,a,s’) \

It's a
CS221 / Autumn 2018 / Liang DFA !

From CS243

Program Analysis with
Optimizations

IT. Transfer Functions

« A family of transfer functions F
 Basic Properties /: V> V
(")
— Has an identity function
« 3fsuch that AXx) = x, for all x.

— Closed under composition
« if A,keF, fief,e F
\- y,

>

N
11s functions
with specific
properTies!

C5243: Foundation of Data Flow 17 M. Lam

pronounced “big-oh of ...” or sometimes “oh of ...” From CS161

- Design and Analysis of
Algorithms

O(...) means an upper bour

e Let T(n), g(n) be functions of positive integers.
* Think of T(n) as being a runtime: positive and increasing in n.

 We say “T(n) is O(g(n))” if g(n) grows at least as fast as
T(n) as n gets large.

It's FOL and
" Forma”yf functions:

" T(n) = O(g(n)))
=

dc,ng > 0 s.t. Vn = n,,

 0=T(n)<c-gn)

From CS224W

Machine Learning with
ﬂrn.nh

Graph G(V, E) has expansmn a. if

Or equivalently:

edges leaving §

First—order
definitions on
graphs!

Sef difference
and cardinality:

From CS242

Programming
Languages

Typed lambda calculus

To understand the formal concept of a type system, we’re going to extend our lambda calculus from last week
(henceforth the “untyped” lambda calculus) with a notion of types (the “simply typed” lambda calculus). Here’s the

essentials of the language:
/ Type 7 :: int integer \

| =T function
Expression e :: o variable
n integer

e1 P ey binary operation l \
A(x:7)

. e function

€1 €2 application IT's a

CFa!
\Binop@::: + =%/ /

First, we introduce a language of types, indicated by the variable tau (7). A type is either an integer, or a function from
an input type 7; to an output type 75. Then we extend our untyped lambda calculus with the same arithmetic language

from the first lecture (numbers and binary operators)*. Usage of the language looks similar to before:

Definitions
in terms ot
strings!

From CS166

Advanced Data
Structures

he Anatomy of a Suffix Tree

fA branching word iD ()

\‘ T'$ is a string w such i e :‘ ’ S
that there are e
characters a # b 9 $ <
where wa and wb are e 2

\Substrings of T$.)

n

S

=

« Edge case: the empty $
string is always @

considered branching.

Wr 0D DM 3O
-

“*® 0 O

« Theorem: The suffix
tree for a string T has @
an internal node for a
string w if and only if
w 1s a branching word nonsenses$

in I'$. 012345678

“* W O M WM O O

"
|

Q

Finite State Machines

From CS144
event causing state transition Copimiroduction Lo
- — omputer Networking
actions taken on state transition
..--"""'—'—-_—_-_ __-"""“"h-

event
actions

e Represent protocols using state machines

- Sender and receiver each have a state | 11's a generalizatior
ot DFAs!

- Start in some initial state

- Events cause each side to select a state transition

e Transition specifies action taken
- Specified as events/actions
- E.g., software calls send/put packet on network

- E.g., packet arrives/send acknowledgment

From CS168

The Modern
Algorithmic Toolbox

Reducibility:

Bv_definitiof. we need to_output v if and onlv if
y € S. That i, answering membership queries reduces to solving the Heavy Hitters problem.

BYthe“memb D Propicn We 111ca T TASK O PTCPTOCCSSITIE & SCt S L0 alISWeT (UCTIC

? O

of the form “is y € S”7 (A hash table is the most common solution to this problem.) It is
intuitive that vou cannot correctly answer all membership queries for a set S without storing

S (thereby using linear, rather than constant, space) — if you throw some of S out, you
might get a query asking about the part you threw out, and you won't know the answer.
It’s not too hard to make this idea precise using the Pigeonhole Principle.®

A

—
A Myhill—
Nerode—style
argumenT:

From CS154

Introduction to
Automata and
Complexity Theory

Kolmogorov Complexity (1960’s)

Definition: The shortest description of x, denoted as
d(x), is the lexicographically shortest string <M, w»>
such that M(w) halts with only x on its tape.

Definition: The Kolmogorov complexity of x, denoted

as K(x), is |[d(x)]. Using Turing

machines To define
intrinsic informafion
confent:

From CS246

Mining Massive Data
Sets

Suppose we are given a set of d

Each document d covers a set X4 of
words/topics/named entities W

For a set of documents A <D we define

4)
F) = || xe T
_ deA y
Goal: We want to Functions, set
union, and set
ImMax F(A) cardinalify:
|A|<k

Note: F(A) is a set function: F(4): Sets - N

From CS250

Algebraic Error
Correcting Codes

Alphabets:

@ FORMAL DEFINITIONS
LA[Z. begné faite < \etvwo\oeaniﬁfeﬁen

DEF. A CodbE C of BLOCKAHENGFH—w—over
an ALPRARET 2, is a [suloset CQZW
An eavant ce C s c

Somdimes T will say

a instead of
W\ajih chk \eraﬂ\ E

Languages!

You've given yourself the foundation
to tackle problems from all over
computer science.

There’s so much more to explore.
Where should you go next?

Course Recommendations

» CS154: Introduction to the Theory of Computation

« The “spiritual sequel” to CS103; does a deep dive into automata, TMs,
and computability/complexity theory.

« If you enjoyed the tail end of this course, highly recommended as a next
step.

* CS161: Design and Analysis of Algorithms

« A natural next course in CS theory, focusing on the design of efficient
algorithms.

* (Super helpful for job interviews!)

« CS143: Compilers

« Use your automata and CFG prowess to translate source code into
machine code. Extremely rewarding!

« CS257: Introduction to Automated Reasoning

 See how to automate formal proofs, play around with SAT and
propositional logic, etc.

Course Recommendations

Theoryland

CS154 A
Phil 151
Phil 152
Math 107]
Math 108 -
Math 113
Math 120
Math 161 |

Math 152 } Number Theory

} Complexity

> Computability

> Graphs

> Functions

} Set Theory

Applications

CS124
CS143
CS161
CS224W)
CS242
CS243
CS246
CS250
CS251

CS255 /

)

Languages /
Automata

> Graphs

Functions

The CS Theory Group

« Stanford’s has a world-class theory group in the CS
department doing research in cryptography, error-
correcting codes, algorithms, machine learning,
complexity theory, algorithmic fairness, etc.

 The faculty are super approachable and down-to-
earth. The theory group also has a stellar student-
to-faculty ratio (something like 6:1 undergrads to

professors).

 The group holds weekly Thursday lunches and
“Theory Tea” events. Interested in learning more?

https://mailman.stanford.edu/mailman/listinfo/theory-seminar

Something Else to Consider

* If you enjoyed (parts of) this class:

 CS is a great place for you!
* Try out some of the courses listed above!

* If you did NOT enjoy this class:

Something Else to Consider

* If you enjoyed (parts of) this class:

 CS is a great place for you!
* Try out some of the courses listed above!

* If you did NOT enjoy this €lass material.:

Something Else to Consider

* If you enjoyed (parts of) this class:

 CS is a great place for you!
* Try out some of the courses listed above!

* If you did NOT enjoy this €lass material.:

 CS is a great place for you!

 Theoryland is a wild, exotic, and
amazing place, but it’s not for
everyone. You can find joy and fulfillment in
other areas of CS.

Your Questions

What do you want to know?

Final Thoughts

A Huge Round of Thanks!

There are more problems to
solve than there are programs
capable of solving them.

Your skills are rare.
Your skills are powerful.
Best of luck wherever they take you!

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

